
PENFIELD HIGH

SCHOOL

INTRODUCTION TO
PROGRAMMING

D.O AMOAH-DANQUAH |
PENFIELD HIGH SCHOOL

OBJECTIVES
At the end of this unit you should be able to:

define programming language

state the classification of programming languages.

identify the features of programming language.

explain some terminologies associated with
programming.

explain program development life cycle

explain algorithm concepts and flowchart concepts,

A programming language is a formal constructed language
designed to communicate instructions to a computer.

Programming languages can be used to create programs to
control the behaviour of a computer or to express

algorithms.

The description of a programming language is usually split
into two components of syntax (form) and semantics

(meaning).

DEFINITION OF PROGRAMMING
LANGUAGE

The earliest computers were often programmed without
the help of a programming language, by writing programs

in absolute machine language.

The programs, in decimal or binary form, were read in
from punched cards or magnetic tape, or toggled in on
switches on the front panel of the computer. Absolute

machine languages were later termed first-generation
programming

The Development of Programming
Language

The next was development of so-called second-
generation programming language (2GL) or

assembly languages, which were still closely tied
to the instruction set architecture of the specific

computer.

These served to make the program much more
human-readable, and relieved the programmer of
tedious and error-prone address calculations.

The Development of Programming
Language

The first high-level programming language, or
third-generation programming language (3GL),

were written in the 1950s.

An early high-level programming language to be
designed for a computer was Plankaikül

developed for the German 23 by Konrad Zuse
between 1943 and 1945. However, it was not

implemented until 1998 and 2000

The Development of Programming
Language

In 1954, language FORTRAN was invented at
IBM by John Backus; it was the first widely used

high level general purpose programming
language to have a functional implementation.

It is still popular language for high performance
computing and is used for program that
benchmark and rank the world's fastest

supercomputer.

The Development of Programming
Language

Computer programming language can be
classified into two major categories:

Low-Level programming language

High-level programming language

Classification of Programming
Language

The languages which use only primitive operations
of the computer are known as low-level language.
these languages, programs are written by means
of the memory and register's available on the
computer.

In other words, programs written in one low level
language which it architectural cannot be ported on
any other machine dependent languages.

LOW-LEVEL LANGUAGES

A typical low-level instruction consist of two parts

Operational part: specifies operation to be
performed by the computer, also known as Op-
code

 Address part: specifies location of the data
which operation is to be performed. Examples are
Machine language and Assembly language.

Low-level languages Cont.

In machine language program, the computation is
based on binary numbers. All the instructions including
operations, registers, data and memory locations are

given in the binary equivalent.

The machine directly understands this language by
virtue of its circuitry design so these programs can
directly be executable on the computer without any
translations. This makes the program execution very
fast. Machine languages are also known as first-
generation languages.

Machine languages

Machine language makes most efficient use of
computer system resources like storage, registers

etc.

The instruction of a machine language program is
directly executable so there is no need al

translators.

It can be used to process the individual bits in a
computer system with high execution speed due to

direct processing of memory and register

Advantages of Machine
languages

Machine languages are machine dependent; therefore,
programs are not portable from one computer to the

other.

Programming in machine language usually results in
poor programmer productivity.

Machine language requires a high level of programming
skills which increases programming training cost.

Programs written in machine language are more error
prone and difficult to debug Assembly Language

Disadvantages of Machine
languages

Assembly languages are also known as second-
generation languages. These languages

substitutes alphabetic or numeric symbols for the
binary codes of machines language.

It has two parts, macro name and macro body
which contains the line of instruction.

A macro can be called at any point of the program
by its name to use the instructions given in the

macro repetitively.

Assembly language

These languages require a translator
known as "Assembler" for translating the

program code written in assembly
language to machine language.

Because computer can interpret only the
machine code instruction, once the

translation is completed the program can
be executed.

Assembly language Cont.

Assembly language provides optimal use of computer
resources like registers and memory.

Assembly language is easier to use than machine
language because there is no need to remember or

calculate the binary equivalents for op-code and
registers.

An Assembler is useful for detecting programming errors.

Assembly language encourages modular programming
which provides the facility of reusable code, using macro.

Advantages of Assembly
languages

Assembly language programs are not directly
executable due to the need of translation.

Assembly languages are machine dependent and
therefore, not portable from one machine to another.

Programming in assembly language requires a high
level of programming skills and knowledge of computer
architecture of the particular machine

Disadvantages of Assembly
languages

All high-level languages are procedure-oriented
language and are intended to be machine

independent Programs are written in statements in
English language,

These languages require translators (compilers
and interpreters) for execution. The programs

written in a high level language can be ported on
any computer that is why they are known as

machine independent.

High-level Languages

The early high-level languages come in third
generation of languages, COBOL, BASIC, API,
etc. These languages enable the programmer
to write instruction using English words and

familiar mathematical symbols which makes it
easier than technical details of the computer

 High-level Languages cont.

Procedures are the reusable code which can be
called at any point of the program.

Each procedure is defined by a name and set of
instructions accomplishing a particular task.

The procedure can be called by its name with the
list of required parameters which should pass to

the procedure.

High-level Languages

They are easier to learn than assembly language.

Less time is required to write programs.

They provide better documentation.

They are easier to maintain.

They have an extensive vocabulary.

Advantages High-level
Languages

A long sequence statement is to be written
for every program.

Additional memory space is required for
storing compiler or interpreter.

Execution time is very high as the HLL
programs are not directly executable.

Disadvantages High-level
Languages

Date type

Is a classification of data which tells the compiler or
interpreter how the programmer intends to use the

data. Examples are real, integer, Boolean etc. A data
type provides a set of values from which an

expression may take its values.

The data type defines the operations that can be done
on the data, the meaning of the data, and the way

values of that can be stored.

 Features of Programming
Language

 Variable or scalar

Is a storage location paired with an associated
symbolic name (an identifier), which contains some
known and unknown quantity of information.

Constant

Is a value that cannot be change by the program
during normal execution. The value used also remains
constant. This is the opposite to variable, which is an
identifier with a value that can be changed during
normal execution.

 Features of Programming
Language Cont.

 Variable or scalar

Is a storage location paired with an associated symbolic
name (an identifier), which contains some known and

unknown quantity of information.

Constant

Is a value that cannot be change by the program during
normal execution. The value used also remains

constant. This is the opposite to variable, which is an
identifier with a value that can be changed during

normal execution.

 Features of Programming
Language Cont.

Precedence

Operator precedence determines the order in which
operators are evaluated Operators with higher

precedence are evaluated first.

A common example: 3+45// returns 23. The
multiplication operator ('*') has higher precedence than

the addition operator ('+') and thus will be evaluated
first.

NB: Remember every programming language has its
operator precedence.

 Features of Programming
Language Cont.

Input/output Statements An input/output statement
or 1.0 statement is a portion of a program that instructs

a computer how to read and process information. It
pertain together information from an input device, or

sending information to an output device.

Built-in functions A function that is built into an
application and can be accessed by end-users For
example, most Spreadsheet applications support a
built-in SUM function that adds up all cells in a row or
column.

 Features of Programming
Language Cont.

Sequential execution statement This is when your
instructions are executed in the same order that they
appear in your program, without repeating or skipping
any instructions from the sequence.

For example, this sequential execution:
Int a= 5;
Int b= 12;
Int c= a*a+b+7;

 Features of Programming
Language Cont.

Conditional execution statement is a feature of a
programming language, which perform different computations or
actions depending on whether a programmer-specified Boolean
condition evaluates to true or false. Example is stated here: if-
then-else statements.

Loop A loop is a sequence of instructions that is continually
repeated until a certain condition is reached. Typically, certain

process is done, such as getting an item of data and changing it,
and then some condition is checked such as whether a counter

has reached a prescribed number.

 Features of Programming
Language Cont.

Source code is any collection of computer instructions,
possibly with comments, written using a human-readable
programming language, usually as plain text.

Boolean expression is an expression in a programming
language that produces a Boolean value when evaluated,
that is one of True or False.

Class is an extensible program-code template for creating
objects, providing initial values for state (member variables)
and implementations of behaviour (member functions or
methods)

 TERMINOLOGIES ASSOCIATED
WITH PROGRAMMING

Comment is a programmer-readable explanation in
the source code of a computer program They are
added with the purpose of making the source code
easier for humans to understand and are generally
ignored by compilers and interpreters.

Compiler is a special program that processes
statements written in a particular programming

language and turns them into machine language or
code that computer's processor uses.

 TERMINOLOGIES ASSOCIATED
WITH PROGRAMMING

Interpreter is a computer program that directly
executes, that is, performs, instructions written in a
programming or scripting language, without previously
compiling them into a machine language program.

Debugging is the routine process of locating and
removing computer program bugs, error of
abnormalities, which is methodically handled by
software programmers via debugging tools.

 TERMINOLOGIES ASSOCIATED
WITH PROGRAMMING

Bug is an error, flaw, failure or fault in a computer
program or system that causes it to produce an
Incorrect or unexpected result, or to behave in

unintended ways.

Event procedure The code that performs actions in
response to events is written in event procedures.

Each event procedures contains the statements that
execute, when a particular event occurs on a particular

object.

 TERMINOLOGIES ASSOCIATED
WITH PROGRAMMING

Syntax The syntax of a computer language is the set of rules
that defines the combinations symbols that are considered to

be a correctly structured document or fragment in that
language

Run-time error - An error that occurs during the execution of
a program. In contrast, compile time errors occur while a

program is being compiled. Runtime errors indicate bugs in
the program or problems that the designer had anticipated but
could do nothing about. For example running out of memory

will often cause a runtime error.

 TERMINOLOGIES ASSOCIATED
WITH PROGRAMMING

Coding is a term used for both the statements written in a
particular programming language, the source code, and a
term for the source code after it has been processed by a

compiler and made ready to run in the computer.

Object-oriented programming (OOP) is a programming
language model organized around objects rather than actions
and data rather than logic. Ideally, a program has been
viewed as a logical procedure that takes input data,
processes it, and produces output data.

 TERMINOLOGIES ASSOCIATED
WITH PROGRAMMING

Program Development

Life Cycle

When we want to develop a program

using any programming language, we

follow a sequence of steps. These steps

are called phases in program

development. The program development

life cycle is a set of steps or phases that

are used to develop a program in any

programming language

Program Development
Life Cycle

Completed programs are

periodically reviewed to evaluate

their accuracy, efficiency,

standardization and ease of use.

Changes are made to the program's

code as needed.

6. Program maintenance

The program's objectives,

outputs, inputs, and processing

requirements are determined.

1.Analysis Specification

The program is written or

coded using a

programming language.

3. Program code

A solution is created using

programming techniques such as

top-down program design,

Pseudocode, flowcharts, and

logic structures.

2. Program design

Documentation is an on-going process

throughout the programming process.

This phase focuses on formalizing the

written description and processes

used in the program.

5. Program Documentation

The program is debugging and tested

by looking for syntax and logic errors..

4. Program debug and test

Program

Specification

Program specification is also called

program definition or program analysis. It

requires programmer or the end user to

specify five items:

 The program objectives,

 The desire output,

 The input data required,

 The processing requirements,

 and documentation.

The program
objectives

You solve all kinds of problems every day.

A problem might be decided how to

commute to school. Thus every day you

determine your objectives, the problem

you are trying to solve, Programming is

the same; you need to make a clear

statement of the problem.

The desire output

The best way is to specify outputs before

inputs. That is, you need to list what you

want to get out of the computer system.

Then you should determine what will go

into it. The best way to do this is to draw

a picture.

The input data

Once you know the output you want, you

can determine the input data and the

source of this data. For example, for a

time and billing report, you can specify

that one source of data to be processed

should be time cards.

The processing
requirements

Here you define the processing tasks

that must happen for input data to be

processed into output. For advantage,

one of the tasks for the program will be to

add the hours worked for different jobs

for different clients.

 Documentation.

You should record program objectives,

desired outputs, needed inputs and

required processing. This lead to the next

step, program design

Program Design

During this phase, the system is designed to satisfy

the functional requirements identified in the previous

phase. Here you plan a solution, preferably using

structured programming techniques.

These techniques consist of

 Top-down programing

 Pseudocode,

 Flowchart and,

 logic structure.

 Top-down

programing

First determine the outputs and inputs for the

program. Then use top-down program design to

identify the program's processing steps. Such

steps are called program modules. Each

module is made up of logically relate program

statements.

 Pseudocode

Pseudocode is an outline of the logic of the

program you will write. It is like doing a

summary of the program before it is written.

Remember this expresses the logic of what you

want the program to do. It is a representation of

code used to demonstrate the implementation of

an algorithm without actually doing so.

 Flowchart

A flowchart is a type of diagram that represents

an algorithm, workflow or process.

These graphically present the detailed

sequence of steps needed to solve a

programming problem.

 Logic Structures

Logical structure refers to the way information in

a document is organized; it defines the

hierarchy of information and the relation

between different parts of the document. Logical

structure indicates how a document is built, as

opposed to what a document contains

 Logic Structures

All Logic structures follow these three structures —

sequence, selection, and looping.

The Sequence Structure-In the sequence structure,

one program statement follows another. They logically

follow each other. There is no question of "yes" or "no"

of a decision suggesting other sequence.

 Logic Structures

The Selection Structure - The selection structure

occurs when a decision must be made. The outcome

of the decision determines which of two paths to

follow. This structure is also as IF-THEN-ELSE

structure, because that is how you can formulate the

decision

 Logic Structures

The loop structure - The loop structure describes a

process that may be repeated as long as a certain

condition remains true. The structure is called a "loop"

or "iteration" because the program loops around

(iterates or repeats) again and again. The last thing to

do before leaving the program design step is to

document the logic of the design. This report typically

includes Pseudocode, flowcharts, and logic structure.

Program

Code

Writing the program is called coding.

Here you use the logic you developed in

the program design step to actually

write the program. That is, you write out

using pencil and paper or typing on a

computer

Program

Test

Program testing is the process of

executing a program with the intent of

finding errors. A good test is one that

has a high probability of finding an error.

Programming errors are of two types:

Syntax errors and Logic errors

Syntax Errors

A syntax error is a violation of the rules of the

programming language. For example in C++

each statement must end with a semicolon (:). If

the semicolon is omitted, the program will not run

due to syntax error.

Syntax errors are mistakes in using the

language. Examples of syntax errors are missing

a comma or a quotation mark, or misspelling a

word

The arrangement of words and phrases to create well-formed sentences in a language.

the structure of statements in a computer language.

Logic Errors

Logic errors occur when there is a fault in the logic

or structure of the problem. Logic errors do not

usually cause a program to crash.

A logic error occurs when the programmer uses an

incorrect calculation or leaves out a programming

procedure.

For example, a payroll program that did not

compute overtime hours would have a logic

error

a system of reasoning that aims to draw valid conclusions based on given information.

Program

Documentation

Documentation consists of written

descriptions and procedures about a

program and how to use it. It is not

something done just at the end of the

programming process. Program

documentation runs through all the

programming steps.

It is the information, available in writing

about a program

Program

Documentation

This documentation is typically within

the program itself and in printed

documents. Documentation is important

for people who may be involved with the

program in the future. These people

may include the following:

 User

 Operators

 Programmers

 User

Users need to know how to use the software. Some

organisations may offer training courses to guide

users through the program. However, other

organisations may users to learn a package just

from the written documentation. Two examples of

the documentation are the manuals that

accompany the software and the help option within

most computer applications.

 Operators

Operators documentation must be

provided for computer operators. for

instance, If the program sends them an

error messages, they need to know what

to do about them.

 The Programmers

As time passes, even the creator of the original

program may not remember much about it. Other

programmers wishing to update and modify it, that is,

perform program maintenance may find themselves

frustrated without adequate documentation therefore

the need for this kind of documentation. This kind of

documentation should include text and program

flowcharts, program listings, and sample outputs.

Program Maintenance

Program maintenance is the process

of changing, modifying, and updating

software to keep up with customer

needs.

The purpose of program maintenance is

to ensure that current programs are

operating error free, efficiently, and

effectively. Activities in this area fall into

two Categories:

operations and changing needs.

Operations

Activities

Operations activities deals with locating

and correcting operational errors, making

programs easier to use, and standardizing

software using structured programming

techniques.

Changing Needs

The category of changing needs is unavoidable. All

organisations change over time, and their programs

must change with them. Programs need to be adjusted

for a variety of reasons, including new tax laws, new

information needs, and new company policies.

Significant revisions may require that the entire

programming process begin again with program

specification.

Algorithms

Concept

Algorithms
Concept

Algorithm is a step-by-step procedure to

solve a given problem. They are a set of

instructions (method) which if faithfully

followed will produce a solution to a given

problem.

It is a procedure or formula used for

solving a problem.

Example 1 - Design an algorithm for adding the test scores
as given: 26, 49,98,87,62,75

The Algorithm

1. Start

2.Sum=0

3. Get the first testscore

4. Add first testscore to sum

5. Get the second testscore

6. Add to sum

7. Get the third testscore

8. Add to sum

9. Get the Forth testscore

10. Add to sum

11. Get the fifth testscore

12. Add to sum

13. Get the first testscore

14. Add to sum

15. Output the sum

16. Stop

Techniques for
Representing Algorithms

We can express an algorithm many ways, including

natural language, flow charts, pseudocode, and of

course, actual programming languages.

 Psedo code

 Flowcharts

 Actual code

Pseudo code

Pseudo code is a term which is often used in

programming and algorithm based fields. Pseudo

code, as the name suggests, is a false code or a

representation of code which can be understood

by even a layman.

It is a readable description of what a computer

program or algorithm must do, expressed in a

formally-styled natural language rather than in a

programming language.

Algorithm Building
Blocks

All problems can be solved by employing any one of

the following building blocks or their combinations.

 Sequences

A sequence of instructions that are executed in the

precise order they are written in:

 statement block 1

 statement block 2

 statement block 3

Algorithm Building
Blocks

Example : Suppose you are required to design an algorithm

for finding the average of six numbers and the sum of the

numbers is given.

The pseudo code will be as follows

Start

Get the sum Average=sum/6

Output the average

Stop

Algorithm Building Blocks

Example 2: A pseudo-code required to input three numbers

from the keyboard and output the result.

Start

Use variables: sum, number 1, number2, number3 of type integer

Accept number1, number2, number3

Sum=number1 + number2+number3

Printsum

Stop

Algorithm Building Blocks

Example 2: A pseudo-code required to input three numbers

from the keyboard and output the result.

Start

Use variables: sum, number 1, number2, number3 of type integer

Accept number1, number2, number3

Sum=number1 + number2+number3

Printsum

Stop

Example 4 – A pseudo-code describes an algorithm which
will accept two numbers from the keyboard and calculate
the sum and product displaying the answer on the monitor
screen.

Start

Use variables sum, product, number 1, number2 of type real

display "Input two numbers“

accept number 1, number2

sum = number1 + number2

print "The sum is", sum

Product = number1*number2

print "The Productis", product

Stop

Algorithm Building
Blocks

 Conditionals

Conditionals are a fundamental programming

element that allows a computer to make decisions

depending on specific criteria.

Select between alternate courses of action

depending upon the evaluation of a condition

Algorithm Building
Blocks

 Conditionals

If (condition=true)

statement block 1

Else

statement block 2

End if

Example 5 – The following shows how the selection control
structure is used in a program where a teacher chooses the

options for multiplying the numbers or adding them or
subtracting.

Start

Use variables: choice, of the type character,

ans, number 1, number2, of type integer

display "choose one of the following“

display "m for multiply" display "a for add“

display "s for subtract“

accept choice

display "input two numbers you want to use“

accept number1, number2

if choice = m

then ans=number1*number2

if choice = a

then ans number1+number2

if choice=s

then ansnumber1-number2

display ans

Stop

Class Work

The program to input an examination mark and test it

for the award of a grade. The mark is a whole number

between 1 and 100.

Grades are awarded according to the following criteria

>=80-Distinction

>=60-Merit

>=40-Pass

<40-fail

